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Cover: A wild Peromyscus with the tan streak color pattern found in Alberta, 
Canada.  We believe the species to be Peromyscus maniculatus borealis.  The 
tan streak animals in the PGSC colony originated from a closed colony of P. 
maniculatus nubiterrae trapped in the southern Blue Ridge Mountains of Macon 
County, North Carolina.  This mouse, however, was trapped at 56-38-30 N by 
123-23-24 W, elevation 1,111 meters. 
 
Photograph by Frank Ritcey, Operations Manager, Christina Falls Outfitters 
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Peromyscus Newsletter Number 41 
 
This is the second exclusively electronic issue of PN and the second for which I 
have been editor.  I would like to thank all of you who have been so supportive 
with your well-wishes and comments for improving the newsletter.  The feedback 
has been very helpful, so keep it coming!  Just send me an email at 
peromyscusnewsletter@biol.sc.edu.  
 
One difficulty I have encountered for which I have no solution is the frequency of 
returned emails when I send notices to the list.  I believe many if not most are 
legitimate addresses but the recipient’s server will not allow the message to pass 
due to the long list of undisclosed recipients.  I will try to contact as many of 
these people as possible about the problem, but if any of you know someone 
who has not been getting their emails I would be grateful if you could ask them to 
check their spam filters and send me an email so I may verify their correct email 
address. 
 
As the size of the electronic PN poses a problem for many people’s servers, I will 
no longer send it as an attachment.  Instead, you may view and download the 
latest version at http://stkctr.biol.sc.edu/    and click on the Newsletter tab.  
Several people mentioned they print out the Newsletter instead of reading it on 
their computers.  The switch to a plain white background is an attempt to 
increase readability under those circumstances. 
 
Finally, and most importantly, we say goodbye to the Stock Center director for 
the past 6 years, Dr. Mike Dewey, who retired at the end of August.  He is 
replaced by Dr. Mike Felder (director) and Dr. Gabor Szalai (associate director).  
More information about our new directors and a farewell tribute to Dr. Dewey are 
included in this issue.  I hope you enjoy. 
 
Julie
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News, Comments, and Announcements: 
 
Published in Molecular Phylogenetics and Evolution 40 (2006): 251-258 is a 
paper by S. A. Reeder et al entitled “Neotomine-peromyscine rodent systematics 
based on combined analyses of nuclear and mitochondrial DNA sequences”.  
These authors recommended the following genera should be included in the 
Peromyscini: Habromys, Isthmomys, Megadontomys, Neotomodon, Onychomys, 
Peromyscus, Podomys, and Reithrodontomys. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
The 2006 annual meeting of the American Society of Mammalogists took place 
Saturday June 17 to Wednesday June 21, 2006 at the University of 
Massachusetts, Amherst. There were 7 presentations relating to Peromyscus 
research, some of which are included in the contributions section.  Presentations 
not in the contributions section are summarized below. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦  
 
Presented at ASM 2006 was THE EFFECTS OF BOT FLY PARASITISM ON 
MOVEMENTS OF PEROMYSCUS LEUCOPUS by Michael J. Cramer & Guy N. 
Cameron of the University of Cincinnati.  They reported that although there was 
no overall effect of infection on distance moved, females tended to move less 
when infected than males, and there was no difference in movement between 
individuals with a single infection and those harboring several larvae. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Also at ASM 2006 was POPULATION GENETICS OF THE DEER MICE, 
PEROMYSCUS MANICULATUS, FROM THE WARNER MOUNTAINS OF 
CALIFORNIA: ONE LINEAGE OR TWO? by Stephanie A. White, Stephanie 
MacDonald, Allison Ivancovich, Leslee A. Parr & John O. Matson.  By 
sequencing the mitochondrial D-loop they confirmed the results of an earlier 
study demonstrating there are two distinct maternal lineages in this single 
population residing in the Warner Mountains. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
At ASM 2006 a poster was presented entitled COAT COLORS OF MALE AND 
FEMALE PEROMYSCUS MANICULATUS: UNEXPECTED DIFFERENCES by 
Laurie Gayes & Virginia Hayssen of Smith College, MA.  Using a chromometer to 
measure 3 color components, these authors not only found that agouti coats had 
higher values, they found an unexpected sex difference not distinguishable to the 
human eye.  For both coat colors, males displayed higher values than females. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
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♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Also at ASM 2006 was work done at the PGSC, PEROMYSCUS GENETIC 
LINKAGE COMPARISONS WITH RATTUS AND MUS by Julie L. Weston, Clifton 
M. Ramsdell, Adrienne Lewandowski, Travis C. Glenn & Michael J. Dewey.  This 
was based on Cliff Ramsdell’s PhD work demonstrating that Peromyscus 
genome arrangement is more similar to Rattus than Mus.  Look for Cliff’s results 
in future issues of PN and other refereed journals. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Recently published was the third edition of Mammal Species of the World 
edited by Don E. Wilson and DeeAnn M. Reeder.  It is a 2-volume set available 
through The Johns Hopkins University Press, 2715 N. Charles Street, Baltimore, 
MD 21218   Phone: 1-800-537-5487   Web Address: www.press.jhu.edu 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Contribuciones Mastozoológicas en Homenaje a Bernardo Villa has just been 
published by Victor Sánchez-Cordero and Rodrigo Medellín, editors.  Chapter 13, 
“Peromyscine Biogeography, Mexican Topography and Pleistocene Climatology” 
is written by our own Wally Dawson.  Although we do not have a copy of the 
book itself, we have reprints of Dr. Dawson’s chapter, and anyone wishing to 
receive a copy should email: peromyscus@stkctr.biol.sc.edu   
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
According to the Centers for Disease Control and Prevention, there may be a 
greater risk for human hantavirus infection this year.  During January-March 
2006, a total of nine confirmed cases of Hantavirus Pulmonary Syndrome were 
reported from Arizona, New Mexico, North Dakota, Texas, and Washington. Six 
of the nine cases were in Arizona and New Mexico (we reported on 2 from 
Arizona in the last issue, PN40).  The elevated risk is believed to be the result of 
increased rainfall in the past 2 years leading to increased vegetative biomass, 
higher rodent populations, and increased virus transmission. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Recently published in March 2006 is “The Geography of Mammalian Speciation: 
Mixed Signals from Phylogenetics and Range Maps” by Benjamin M. Fitzpatrick 
and Michael Turelli (Evolution 60(3): pp. 601-615).  These authors reported 
evidence that allopatric, not sympatric, speciation was responsible for the 
diversity of species in the Peromyscus boylii group. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
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♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Help out a researcher in need!  Justin Boyles at the Department of Ecology and 
Evolution, Indiana State University is studying latitudinal variation in pelage 
insulation in Peromyscus leucopus and P. maniculatus across their ranges.  He 
needs 8-10 adults of both species trapped in winter (Dec-Feb) from as many 
sites as possible.  If you can help him out contact him for shipping and handling 
instructions at jboyles3@indstate.edu 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Looking for a Peromyscus project for yourself or a student?  The Stock Center 
has recently been contacted about the availability of a wonderful resource.  Dr. 
Wendel Johnson of the University of Wisconsin – Marinette has ecological, 
morphological, and reproductive data for over 1000 snap-trapped and live-
trapped Peromyscus maniculatus maniculatus from Isle Royale National Park.  
They were collected from 1966-68 while working on his PhD at Purdue University 
under the direction of Dr. Durward Allen.  According to Dr. Johnson, little has 
been published from this data set and he is readying the collection for deposition 
in the Field Museum in Chicago.  Anyone interested should contact him directly 
at wjohnson@uwc.edu or through us at peromyscusnewsletter@biol.sc.edu.  
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Congratulations to Dr. Clifton Ramsdell, the PGSC’s newest PhD!  On 
September 20, 2006, Cliff successfully defended his dissertation entitled, 
“Comparative Genome Mapping of the Deer Mouse (Peromyscus maniculatus)”.  
He was Dr. Mike Dewey’s final graduate student at the University of South 
Carolina and made us all proud! 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Congratulations to our Associate Director, Dr. Gabor Szalai, and his wife, Dr. 
Monika Veres, on the birth of their daughter, Boglárka Eszter Szalai, born 
October 16, 2006. 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
 
Several Peromyscus researchers have begun discussing the benefits of a full 
genome sequence for the genus.  We are actively soliciting input from the 
research community and if the response is positive we will send a separate email 
to the list to coordinate the writing of a white paper for the project.  Send 
comments to: peromyscusnewsletter@biol.sc.edu 
 
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ 
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Collaborators Wanted in Studying Genetics of Reproductive 
Isolation in the Peromyscus maniculatus Species Complex 

 
We have been studying reproductive isolation in the Peromyscus 

maniculatus species complex.  It has long been known that there existed 
variation in producing P. maniculatus – P. polionotus hybrids, and that other 
populations within this species complex display variable degrees of success in 
inter-population matings (Dice, 1949; Liu, 1953; Liu, 1954; Watson, 1942).  Wally 
Dawson first showed that the P. maniculatus – P. polionotus hybrids showed 
parent-of-origin effects on growth and development (Dawson, 1965).  With 
colleagues, he did numerous further studies including ruling out mitochondrial 
DNA – nuclear DNA incompatibilities as the cause of the hybrid dysgenesis 
(Dawson, 1982; Dawson et al., 1993; Rogers and Dawson, 1970).  As an 
alternative hypothesis, the authors speculated that incompatibilities in regions of 
the genome harboring imprinted genes might be responsible (Dawson et al., 
1993).  Imprinted genes are expressed from only one parental allele and are 
known regulators of growth and regulation.  DNA methylation, a common 
epigenetic modification, appears to be a primary regulatory mechanism of this 
phenomenon (Vrana, 2006), and has been shown to be perturbed in other 
mammalian interspecific hybrids (O'Neill et al., 1998).  

 
Our work has shown that imprinted gene expression and DNA methylation 

are perturbed in the hybrids (Duselis et al., 2005; Vrana et al., 1998; Vrana et al., 
2001).  Genetic analysis to date has shown that both imprinted domains of the 
genome and a maternal effect locus are involved in the hybrid dysgenesis 
(Duselis et al., 2005; Loschiavo et al., 2006; Vrana et al., 2000).  We propose 
that the same or similar loci and similar epigenetic changes are involved in 
isolating other populations within this species complex.  Little work has been 
done on population genetics of genomic imprinting or epigenetics in any species.  
This work will have implications for human disease as well as reproductive 
isolation. 
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♦♦♦♦♦♦♦♦♦ 
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THE  PEROMYSCUS  GENETIC  STOCK  CENTER 
 
 
General  
 

The University of South Carolina has maintained a genetic stock center for 
Peromyscus (deer mice and congeneric species) since 1985.  The center was 
established under a grant from the Living Stocks Collection Program of the National 
Science Foundation and continues to be supported by NSF and the NIH Biological 
Models and Materials Research Program.  It also receives support from the University 
and from user fees.   

 
The major function of the Stock Center is to provide genetically characterized 

types of Peromyscus to scientific investigators and educators.  Continuation of the 
center is dependent upon significant external utilization, therefore potential users are 
encouraged to take advantage of this resource.   

 
Policies and Procedures 
 

The Stock Center maintains several categories of stocks of living animals:  
1) Closed colony random-bred1 “wild-type” stocks of seven species of Peromyscus.   2) 
Two highly inbred2 stocks of “wild-type” P. leucopus.  3) Stocks of fifeen coat color 
mutations, mostly in P. maniculatus.  4) Stocks of eight other monogenic traits.  The 
Stock Center operates in strict compliance with the Animal Welfare Act and is located in 
an AAALAC approved facility.  All animal care is performed by certified technicians.  
Stocks are monitored regularly for presence of disease and parasites and are free of 
hantavirus and 15 murine viruses. 
 

The Stock Center also provides blood, organs, tissues, fetuses, skins and other 
biological materials from Peromyscus.  The Stock Center operates a Molecular Bank 
where selected genomic libraries and probes are available.  Other resources include a 
reference collection of more than 2,500 reprints of articles on peromyscine rodents, 
copies of which may be provided.  The Stock Center is the primary sponsor of 
PeroBase, an on-line database dedicated to information regarding Peromyscus and 
closely related species.     
 

Sufficient animals of the mutant types generally can be provided to initiate a 
breeding stock.  Somewhat larger numbers, up to about 50 animals, can be provided 
from the wild-type stocks.  Animals requested in greater numbers frequently require a 
“breed-up” charge and some delay in shipment. 
 
Orders and Pricing 
  

A user fee is charged for animals or materials provided by the Stock Center.  A 
schedule of fees is shown on the next page. Fees vary with species and type of service 
provided. User assumes the cost of all shipment.  Animals lost in transit are replaced 
without charge.  Tissues, blood, skins, etc. are supplied at a modest fee that includes 
technician time.  Arrangements for special orders will be negotiated. Billing will be 
submitted upon satisfactory delivery. Write or call for details or special requirements.
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SCHEDULE  OF  USER  FEES 
 
 
 

Item     Academic and Government   Commercial  
 
MATURE ANIMALS  (each) 
 
   Wild-type Stocks  
    Smaller species (P. maniculatus, 
      P. polionotus, P. leucopus, 
      P. eremicus)       $ 22.50             $35.00 
    Larger species  (P. californicus, 
      P. melanophrys, P. aztecus)        30.00    40.00 
 
   Mutant and Inbred Stocks         30.00    40.00 
 
   Pregnant females (Smaller species)       40.00    50.00 
                                (Larger species)        55.00    65.00 
 
   Special Attention (Diet, etc.)        40.00    50.00 
 
   F1 Species Hybrids          30.00    40.00 
 
 
TISSUE SAMPLES  (Per sample) 
 
   Solid            25.00      
 
   Fluid (Blood, urine, saliva, etc.) per ml       40.00 
 
   Flat skins (each)          35.00 
 
 
MOLECULAR MATERIALS 
 
   Extracted DNA, 20 µg       100.00 
 
   PCR Primers (500 µl @ 10 µM)        10.00 
 
   Genomic & cDNA libraries       300.00 
 
 
OTHER CHARGES 
 
 Shipping costs = actual shipper's charges plus cost of mouse containers, packaging. 
 
 Lab fee for sample preparation. 
 
 Breed-up fees (for orders exceeding 50 animals) = per diem cage charges X cages 

required. 
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STOCKS AVAILABLE 
 
 
WILD TYPE STOCKS ORIGIN
 
P. maniculatus bairdii  Closed colony bred in captivity since 1948.   
(BW Stock)                    Descended from 40 ancestors wild-caught near Ann Arbor MI. 
Deer Mouse 
 
P. maniculatus sonoriensis   Derived from about 50 animals wild-caught by Jack Hayes in  
(SM2 Stock)   1995 near White Mountain Research Station CA. 
Sonoran Deer Mouse 
 
P. polionotus subgriseus   Closed colony since 1952.  Derived from 21 ancestors wild-  
(PO Stock)   caught in Ocala Nat'l. Forest FL. High inbreeding coefficient. 
Oldfield Mouse 
 
P. polionotus leucocephalus   Derived from beach mice wild-caught on Santa Rosa Island FL between 
(LS Stock)  1987-1988 and bred by R. Lacy. 
Beach Mouse 
 
P. leucopus   Derived from 38 wild ancestors captured between 1982 and 1985  
(LL Stock)   near Linville NC. 
White-footed Mouse 
 
P. californicus insignis Derived from about 60 ancestors collected between 1979 and   
(IS Stock)   1987 in Santa Monica Mts. CA.                      
California Mouse 
 
P. aztecus     Derived from animals collected on Sierra Chincua Michoacan,  
(AM Stock)                      Mexico in 1986. 
Aztec Mouse 
 
P. melanophrys  Derived from animals collected between 1970 and 1978 from  
(XZ Stock)                           Zacatecas, Mexico and bred by R. Hill. 
Plateau Mouse 
 
P. eremicus   Originated from 10-12 animals collected at Tucson AZ in 1993. 
(EP Stock) 
Cactus Mouse 
 
INTERSPECIFIC HYBRIDS 
 
P. maniculatus X P. polionotus   Bred by special order. 
F1 Hybrids 
 
P. leucopus X P. gossypinus       Sometimes available by special arrangement. 
F1 Hybrids 
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3COAT COLORSCOAT COLORS                  ORGINAL SOURCE
 
Blonde bln/bln   Mich. State U. colony (Pratt and Robbins, 1982) 

Albino c/c   Sumner's albino deer mice (Sumner, 1922) 

Ashy ahy/ahy   Wild-caught in Oregon ~ 1960 (Teed et al., 1990) 

Black (Non-agouti) a/a Horner's black mutant (Horner et al., 1980) 
4Brown b/b   Huestis stocks (Huestis and Barto, 1934) 

California blonde cfb/cfb Santa Cruz I., Calif., stock (Roth and Dawson, 1996) 

Dominant spotting S/+ Wild caught in Illinois (Feldman, 1936) 

Golden nugget bgn/bgn  Wild caught P. leucopus (Horner and Dawson, 1993) 

Ivory i/i    Wild caught in Oregon (Huestis, 1938) 

Platinum plt/plt  Barto stock at U. Mich. (Dodson et al., 1987) 
4Silver sil/sil   Huestis stock (Huestis and Barto, 1934) 

Tan streak tns/tns  Clemson U. stock from NC (Wang et al., 1993) 

Variable white Vw/+  Mich. State U. colony (Cowling et al., 1994) 

White-belly non-agouti aw/aw Egoscue's "non-agouti" (Egoscue, 1971) 

Wide-band agouti ANb/a Natural polymorphism U. Mich. (McIntosh, 1954) 

 

 
OTHER MUTATIONS AND VARIANTS 

Alcohol dehydrogenase negative   Adh0 /Adh0  South Carolina BW stock (Felder, 1975) 
Alcohol dehydrogenase positive    Adhf /Adhf     South Carolina BW stock (Felder, 1975) 

Boggler bgl/bgl     Blair's P. m. blandus stock (Barto, 1955) 

Cataract-webbed cwb/cwb    From Huestis stocks (Anderson and Burns, 1979) 

Epilepsy epl/epl     U. Michigan P. m. artemisiae stock (Dice, 1935) 

Hairless-1 hr-1/hr-1     Sumner's hairless mutant (Sumner, 1924) 

Hairless-2 hr-2/hr-2     Egoscue's hairless mutant (Egoscue, 1962) 

Juvenile ataxia ja/ja     U. Michigan stock (Van Ooteghem, 1983) 

Enzyme variants Wild type stocks provide a reservoir of variants 
(Dawson, 1983) 

 
 
1 “Random bred” without deliberate selection, sib-sib matings avoided.   2 Inbred lines bred by sib-sib and/or 
parent-offspring mating for 21 generations or more.   3Unless otherwise noted, mutations are in P. maniculatus.   
4Available only as silver/brown double recessive.  
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Other Resources of the Peromyscus Stock Center 
 

 
Highly inbred P. leucopus (I30+) are available as live animals or as frozen tissues.  
 Two lines developed by George Smith (UCLA) are currently maintained by the  

Stock Center. 
 
Limited numbers of other stocks are on hand, but not currently available.  Inquire. 
 
Preserved or frozen specimens of types given in the above tables. 
 
Flat skins of mutant or wild-type coat colors of any of the stocks listed above. 
 
Reference library of more than 2500 reprints of research papers, articles and reports on 

Peromyscus. Single copies of individual articles can be photocopied and mailed.  
Please limit requests to not more than five articles at any given time.  There will 
be a charge of 10 cents per photocopied page after the initial 20 pages. 

 
Photocopies of back issues of Peromyscus Newsletter ($5 ea.) or single original back 

copies, when still available, without charge.  
 
Materials are available through the Peromyscus Molecular Bank of the Stock Center.  

Allow two weeks for delivery.  Included is purified DNA or frozen tissues of any of 
the stocks listed above.  Several genomic libraries and a variety of molecular 
probes are available.  (Inquire for more information) 

 
For additional information or details about any of these mutants, stocks or 
other materials contact:  Janet Crossland, Colony Manager, Peromyscus 
Stock Center, (803) 777-3107, e-mail crosslan@biol.sc.edu
 
PLEASE CALL WITH INQUIRIES 
 

 
 

Peromyscus Genetic Stock Center 
University of South Carolina 

Columbia, SC  29208 
(803) 777-3107 
(803) 777-1212 

FAX (803) 576-5780 
peromyscus@stkctr.biol.sc.edu

http://stkctr.biol.sc.edu
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Farewell and Good Luck to Dr. Michael J. Dewey 
 
The Peromyscus Genetic Stock Center is sad to say farewell to our director for 
the past 6 years, Dr. Michael J. Dewey.  For those of you who know him, and for 
those of you who do not, we offer this insight into the man who has spent the last 
several years advancing Peromyscus research. 
 
Mike grew up in Rawlins, Wyoming with a full-time mother and a father who 
worked on the railroad.  It is no wonder, then, that Mike grew to love trains, 
travel, and the great outdoors.  After graduating high school, Mike decided to 
enroll at the University of Wyoming where he earned his B.S. in microbiology.  
After that, his outgoing personality and love of foreign countries led him to join 

the Peace Corps, where he taught 
biology and biochemistry at the 
University of San Carlos in Guatemala 
City from 1966-68.  Still fascinated 
with microbiology, Mike was accepted 
into the graduate school of the 
University of Pennsylvania, 
Philadelphia.  After spending several 
years studying DNA metabolism and 
processing in T4 phage-infected 
Escherichia coli, Mike completed his 
PhD in 1973.  After graduation he 
decided to pursue a postdoctoral 
position, so he continued at the 
University of Pennsylvania for another 
5 years working with Dr. Beatrice 
Mintz producing mutant mice from 
embryonic stem cells at the Institute 
for Cancer Research in Philadelphia. 
 
In 1979, Mike accepted a faculty 
position in the Department of 

Biological Sciences at the University of South Carolina.  Since then, Mike has 
been an excellent mentor to 6 postdoctoral researchers, 6 PhD students, 6 MS 
students, and undergraduates too numerous to count.  He is an outstanding 
teacher instructing courses in cell and molecular biology, developmental 
genetics, developmental biology, human physiology, and immunology.  His 
excellence in teaching has not gone unnoticed and was officially recognized with 
the Mortar Board 1992 Excellence in Teaching Award.   
 
He has an impressive array of findings during his research career at USC, all 
focused on developmental genetics and immunology.  He was among the very 
first to isolate Y-specific DNA sequence from the mouse.  He has investigated 
the genetic basis of strain differences in osmotic lysis of red cells, eye 
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development, hematopoesis kinetics, and cancer.  He set up USC’s first 
transgenic mouse facility and directed it for ten years.  He has been involved in 
several projects using transgenic mice from this facility to investigate control of 
gene expression including alcohol dehydrogenase, alpha1-acid glycoprotein, the 
testes specific histone (H1t), globin and myolin basic protein.  The alpha1-acid 
glycoprotein mice have been extensively used in drug disposition studies.  Mike 
and his longtime collaborator, Dr. Gary Van Zant, have recently shown an effect 
of inbreeding and genetics on telomere length.  In 1992 he became a member of 
the Stock Center Internal Oversight Committee, serving as the chair for several 
years.  So when the Stock Center’s founder, Dr. Wally Dawson, decided to retire 
these were the skills that made Mike so appealing as the new director. 
 
Mike took on his new role as director in 2000 with enthusiasm and quickly began 
to push Peromyscus research forward.  Under his direction a Peromyscus BAC 
library was constructed, and he has made significant advances in 
cryopreservation and artificial insemination in this genus.  He has recently 
contributed to the understanding of imprinting in Peromyscus through 
collaborations with Paul Vrana and Shirley Tilghman.  His biggest contribution, 
however, was obtaining funding for and overseeing the development of a 
medium-density genomic map.  In pursuit of this goal, the Stock Center now has 
hundreds of microsatellite markers, thousands of expressed sequence tag 
markers, a radiation hybrid panel, and a backcross panel—all of which will 
advance Peromyscus research and are credited to Mike’s efforts. 
 
Mike officially retired at the beginning of September 2006, but is remaining in 
Columbia through December to help the new directors with the transition.  He 
and his wife, Lorraine, have bought a house in Fort Collins, Colorado for their 
retirement.  Retirement for Mike, of course, will be far from inactive.  Mike is 
looking forward to finding a postdoctoral position so he can get back in the lab, 
and he will fill his free time skiing and hiking in what is arguably one of the most 
beautiful parts of the country.  Perhaps most importantly, he will be near one of 
his favorite places, the Wind River Mountains in Wyoming.  Mike Dewey is an 
intellectually curious and creative person.  He is a person of unquestionable 
integrity with a cheerful and optimistic manner.  We wish him luck and happiness.  
He will be greatly missed! 
 
 
 

♦♦♦♦♦♦♦♦♦ 
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Meet the Director of the PGSC, Dr. Michael R. Felder 
 

Dr. Michael R. Felder is the new Director of the Peromyscus Genetic Stock 
Center.  Along with the new Associate Director, Dr. Gabor Szalai, he accepted 
the position this fall.  Mike received his B.S. in biology from Stephen F. Austin 
State University near his hometown of Alto, Texas.  He received his Ph.D. in 
genetics from the University of California at Davis in 1970.  Following 
postdoctoral training at Michigan State University studying genetic control and 
biochemistry of maize alcohol dehydrogenases he became an Assistant 
Professor in the Biology Department at the University of South Carolina.  He is 
currently Professor of Biological Sciences. 
 

Mike’s main interest has been in 
mammalian genetics concentrating on 
the alcohol dehydrogenases in mice and 
Peromyscus.  He was the first to identify 
a mammalian alcohol dehydrogenase 
deficiency in the deer mouse and those 
stocks have been used to confirm the 
existence of alternative routes of alcohol 
metabolism.  He collaborated with Wally 
Dawson mapping several enzyme 
encoding genes in the deer mouse.  He 
has also collaborated with Mike Dewey in
identifying control regions of the mo
Adh1 gene using transgenic expressi
analysis.  More recently he has been 
using transgenic over-expressing
to study the role of CYP2E1 in alcohol-
induced pathology.  Mike’s main interest 
has always been regulation of gene 
expression primarily with the alcohol 
dehydrogenase and CYP2E1 genes a

models.  He is particularly interested in the Peromyscus gene mapping program 
and has plans to explore possible variation in alcohol-induced pathology among 
Peromyscus species and genetic variants. 

 
use 

on 

 models 

s 

 
Like Mike Dewey, Mike Felder enjoys the West, camping, and fishing.  He is 
enthusiastic about this new challenge and looks forward to serving the 
Peromyscus community.  He feels he is following two outstanding leaders of this 
facility, but is very excited about having his colleague, Gabor Szalai, as the co-
Director.  Both Mike and Gabor look forward to a further enhancement of the 
Stock Center.  

 
 

♦♦♦♦♦♦♦♦♦ 
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Meet the Associate Director of the PGSC, Dr. Gabor Szalai 
 
Gabor Szalai grew up in a small town in Hungary. Although his father was a 

biology teacher, as a child he preferred physics, especially electronics and optics. 
The high school he attended did not have a physics club, so he joined the chemistry 
lab and gradually his interest turned towards chemistry. In 1985 he went to 
Colchester High School in Vermont where he took advanced anatomy and 
physiology classes taught by William Romond. He opened Gabor’s mind to the 
chemical processes driving biology, especially molecular genetics.  

 
After being a computer programmer for two years Gabor started his academic 

studies in bioengineering at the Technical University of Budapest (Hungary), earning 
his BSc in 1990 and his MSc in 1992.  
In1990 he received scholarship and spent 
one semester at the University of South 
Carolina working in Dr. Bert Ely’s lab in the 
Department of Biological Sciences.  From 
1992 to 1995 he worked in Dr. Sandor 
Lazary’s laboratory at the University of Berne 
(Switzerland) where he characterized the 
horse MHC class II loci and their allelic 
linkage to diseases, work for which the 
Technical University of Budapest awarded 
him a PhD in 1995.  

 
For the next three years he was a 

postdoctoral researcher and assistant 
professor at the Technical University of 
Budapest, teaching several courses and 
pursuing research.  His research interest 
was developing DNA based studies for food 
authenticity analysis. In 1999 he returned to 
South Carolina and worked in Dr. Michael 
Felder’s lab as a postdoctoral researcher.  

He was interested in the mouse alcohol dehydrogenase (ADH) complex and its 
regulation. He came across deer mice for the first time during this work. He and Dr. 
Felder were able to identify two new mouse ADH genes using the Peromyscus ADH 
cDNA as a probe. In 2002 Gabor moved to Charleston, SC and worked at the 
Hollings Cancer Center in Dr. Dennis Watson’s lab. He was studying several ETS 
transcription factors (Fli-1, Pdef) and their role in megakaryopoiesis and cancer 
using transgenic and knockout mouse models. Gabor has published numerous 
scientific papers, a book chapter on the MHC of the horse and a review article about 
megakaryopoiesis. 

 
He accepted the position as the Associate Director of the Peromyscus Stock 

Center in August, 2006. 
♦♦♦♦♦♦♦♦♦ 
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NOTICE 
 

PEROMYSCUS NEWSLETTER IS NOT A FORMAL SCIENTIFIC 
PUBLICATION. 

 
THEREFORE… 

 
INFORMATION AND DATA IN THE CONTRIBUTIONS SECTION SHOULD 

NOT BE CITED OR USED WITHOUT PERMISSION OF THE CONTRIBUTOR. 
 

THANK YOU! 
 

◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄►◄► 
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in Male Peromyscus polionotus 

 
Amy C. EKLUND1,3, Karen KOENINGER RYAN2, and Carole OBER3

 
1Department of Biology, Indiana University, Bloomington, IN 47405 
2Committee on Evolutionary Biology, University of Chicago, Chicago, IL  60637 
3Department of Human Genetics, University of Chicago, Chicago, IL  60637 

 
Corresponding author: ameklund@indiana.edu        
 
 

Ryan and Lacy (2003) demonstrated biased behavior in male oldfield mice 
(Peromyscus polionotus rhoadsii) towards female mice based on very small 
kinship differences.  Males in this unusually monogamous rodent species 
(Margulis 1998) preferred less-related females, with an average kinship 
difference of 1.3% between preferred and non-preferred females.  Males 
subsequently mated with their preferred females showed higher reproductive 
success than males mated with non-preferred females (Ryan & Altmann 2001). 
The mechanism by which these male mice distinguished such small differences 
in kinship is not known.  Previous work on house mice (Mus domesticus) has 
provided evidence that products of the major histocompatibility complex (MHC) 
can be used to discriminate among individuals, with mice often preferring MHC-
dissimilar mates (reviewed in Knapp 2006; also see Spehr et al. 2006). 
 

We investigated this potential mechanism by examining the relationship 
between allele-sharing at microsatellite loci within the MHC of P. polionotus mice 
and male preferences for females, using the same individual mice tested in Ryan 
and Lacy’s study.  Based on Ryan and Lacy’s results, and assuming less-related 
mice share fewer MHC alleles, we predicted these male mice would bias 
behavior towards receptive and unreceptive females sharing fewer alleles at 
MHC microsatellites. 
 

The P. polionotus mice used in this study were obtained from an outbred 
laboratory colony maintained by R. Lacy at Brookfield Zoo.  The source and 
housing conditions for these mice, and the methods used to perform the social 
preference tests were described previously (Ryan & Lacy 2003).  Briefly, in the 
choice trials a single male could approach and make limited contact with either of 
two females; either both in proestrus (receptive to mating) or both in diestrus 
(unreceptive).  Time spent by a male near a female was used as the measure of 
his preference (Ryan & Lacy 2003). 

 
DNA was extracted from mouse tails using Puregene extraction kits 

(Gentra Systems, MN).  Three polymorphic microsatellites within the MHC Class 
Ib region of P. leucopus, also identified in P. polionotus (Eklund & Ober 2000), 
were then amplified in a small volume PCR.  Class Ib products are expressed on 
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sensory neurons within the murine vomeronasal organ, and may aid in 
pheromone detection (Dulac & Torello 2003; Loconto et al. 2003). Forty-two 
males and 84 females were assigned genotypes at these microsatellites.  
  

MHC sharing between a male and a female was assessed with respect to 
two measures of genetic similarity: allele sharing and haplotype sharing.  The 
number of alleles shared between the male and each of the two females in a trial 
was determined at each of the three loci and then summed over the three loci.  
To measure haplotype sharing, we reasoned that mice sharing one allele at each 
of three loci likely shared a haplotype. Therefore, we categorized pairs based on 
whether the males shared at least one allele at each locus with the female or 
shared no alleles.  Pairs that shared alleles at one or two loci, but not all three, 
were not scored. 
 

In the analysis of allele sharing, a comparison between the diestrus and 
proestrus conditions showed a significant interaction between estrus stage and 
allele sharing, in which male time preferences for diestrus females sharing few or 
many alleles differed from preferences for proestrus females sharing few or many 
alleles (F = 8.471, df = 1, P = 0.006).  Specifically, males spent significantly less 
time with proestrus females sharing four or more alleles than with diestrus 
females sharing four or more alleles (sq.-root transformed, right side data: t = 
3.082, df =22, P = 0.005).  
 

In the haplotype-sharing analysis, males tended to spend more time with 
diestrus females sharing a haplotype (Fig. 1: log-transformed data: t = 1.815, df = 
18, P = 0.086). While also not significant, the opposite trend was apparent for 
males with proestrus females (Fig. 1; t = 1.227, df = 18, P = 0.24). When 
comparing diestrus to proestrus, time preferences based on haplotype sharing 
differed between the two estrus stages, and the interaction between estrus state 
and haplotype matching was significant (log-transformed F = 4.357, df =1, P = 
0.044). 

 
Ryan and Lacy (2003) reported that male P. polionotus preferred less-

related females as potential mates, regardless of estrus state.  Therefore, we 
expected that males would bias behavior towards both proestrus and diestrus 
females sharing fewer MHC microsatellite alleles. Our results partly supported 
this expectation, but suggest that the mechanism of kin discrimination used by 
these mice may be more complex than simple MHC use, as suggested by others 
(i.e., Hurst 2005).  Our results did support previous results showing outbreeding 
mate preferences in estrus (or proestrus), but not diestrus, in Peromyscus 
(Keane 1990).   

 
It is also interesting that male P. polionotus MHC preferences as 

measured by allele sharing were similar to those measured by haplotype sharing.  
Few studies have compared allelic to haplotype-based preferences, but one 
study in humans found haplotype-based MHC preferences, which were not 
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apparent when allele-sharing at individual loci was examined (Weitkamp & Ober 
1998).  More understanding of the mechanism for detection of MHC products 
may help to explain how these genetic differences are functionally interpreted 
(reviewed in Apanius et al. 1997; also see Spehr 2006, Dulac & Torello 2003).   

 
 To summarize, our results showed: 1) a change in male mate preferences 
for unreceptive females sharing many MHC alleles to receptive females sharing 
few alleles, and 2) a change in male mate preferences for unreceptive females 
sharing an MHC haplotype, to receptive females not sharing an MHC haplotype.  
This suggests that male P. polionotus are able to detect and discriminate among 
MHC-types, using both overall haplotype sharing and allele-sharing as markers.  
These data combined with Ryan and Lacy’s results indicate that male 
Peromyscus polionotus choose less-related females as mates, but may not rely 
exclusively on MHC cues to make this discrimination.  Further research is 
needed to determine the mechanism of kin discrimination and mate choice in 
these peromyscine mice. 
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Figure 1.  Haplotype sharing.  Average time spent by males with females sharing 
no alleles at each locus (no match), or at least one allele at each locus (≥1 
match), for diestrus (a), or proestrus (b) females.  Standard error bars and 
sample sizes are shown. (Estrus stage x Haplotype-sharing interaction, p = 
0.044). 
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We currently have two active research projects involving Peromyscus 
maniculatus.  Both projects involve examining population movement and 
demographics utilizing genetic data.  One concentrates on the island 
biogeography of Washington’s San Juan Islands, while the other examines a 
population boundary found in California and Oregon.  Both projects are utilizing 
mtDNA sequence and microsatellite data. 

 
The San Juan Islands archipelago has been heavily influenced by 

repeated cycles of Pleistocene glaciation, with the last recolonization occurring 
within the last 10,000 years. Under an idealized system of a single colonization 
event with a subsequent “island-hopping” pattern of intra-archipelago movement, 
it should be possible to determine the colonizing mainland population and the 
order in which islands were colonized. Using mtDNA control region sequence 
data we were able to reject the null model of a single colonization event. It 
appears that colonization occurred in multiple waves from multiple originating 
populations.  Finally, Pacific Northwest mainland mice in general lack geographic 
structure, suggesting that high levels of gene flow persist between populations.  
Currently, we are examining data from microsatellite loci to see if we can gain 
further resolution. 

 
Building off recent work in Yosemite National Park on P. maniculatus (D.S. 

Yang et al., in review), we are also exploring an apparent population boundary 
that exists between Pacific Northwest/Great Basin populations and California 
populations.  We are able to define these populations based on highly divergent 
mtDNA haplogroups.  Current work with microsatellite loci, on the other hand, 
reveals that the two major mtDNA haplogroups are actively breeding with each 
other, and that the presence of these two haplogroups is likely the result of 
multiple isolations of each population into refugia during Pleistocene glaciation 
events. Nevertheless, geographic structure of microsatellite genotypes exists in 
the area of the mtDNA boundary, which is what I am currently exploring. 
 
 
 

♦♦♦♦♦♦♦♦♦ 
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Blood glucose regulation is among the most critical processes in 
mammalian physiology.  Consistently elevated blood glucose levels result in the 
disease Diabetes Mellitus (DM).  The primary hormone preventing hyperglycemia 
is insulin.  While environmental factors and obesity play a large role in inducing 
human DM, genetic factors also play a significant role.  It has been proposed that 
variants underlying common human diseases including DM represent positive 
selection to past environments.   This suggests that other closely related 
populations with differing ecological niches should also exhibit such variation.   

 
We assessed ability to regulate blood glucose in two recently diverged 

species of Peromyscus which differ in several behaviors.  Our data shows that 
males of these two species differ greatly in their ability to regulate blood glucose 
levels, and that this difference is largely mediated by differences in Y 
chromosome sequence.  These findings have implications both for adaptive 
variation associated with different ecological niches and human disease.  We 
suggest that studies of animals representing natural populations will yield insights 
not possible with mixed and/or inbred lines such as commonly used house 
mouse (Mus) lines. 

 
Peromyscus polionotus is one of the few mammalian species documented 

to be monogamous in the wild, while its sister-species P. maniculatus has been 
shown to have multiple paternity within a litter.  The insulin/insulin-like growth 
factor (Ins/Igf) pathways are key metabolic regulators of mammalian growth and 
behavior.  Because they differ in post-natal growth, sexual dimorphism, mating 
system, and burrow complexity, we asked whether the Ins/Igf system might 
exhibit potentially adaptive variation between the two Peromyscus species.  For 
example, monogamous males spend more time involved in parental care – such 
care would likely necessitate longer periods of fasting than in males engaged in 
less parental care. 
 

We first asked if the two species were equally adept at regulating blood 
glucose, the primary post-natal function of the insulin pathway.  We performed 
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glucose tolerance tests (GTTs) on 15+ individuals of each sex from both species.  
These tests involve 18 hour fasting, then injection of glucose, and monitoring of 
blood glucose levels.  We utilized the Peromyscus Genetic Stock Center strains 
PO (P. polionotus) and BW (P. maniculatus).   Females of both species showed 
similar profiles and a return to normal blood glucose levels by 90 minutes.  In 
contrast, males of the two species displayed highly divergent patterns: PO blood 
glucose levels rose little and returned to near baseline levels by 60 minutes, 
while BW levels rose much higher and did not return to baseline (Fig. 1). 

 
We next performed GTTs on a strain of Y-chromosome consomic mice.  

These animals have been bred such that males are genotypically BW, with the 
exception of the Y chromosome which is of PO origin.  Strikingly, these BW YPO 
animals showed a response more similar to that of the PO males than the BW 
males (Fig. 2).  These data suggest that PO gene variants on the Y chromosome 
are largely responsible for the differences between males of the two species. 

 
We also performed a sham GTT, in which males were fasted, and then 

injected with saline rather than glucose.   PO male blood glucose levels were 
unaffected by the saline injection as predicted.  Surprisingly, the BW male levels 
rose after the saline injection and again did not return to baseline (Fig. 3).  These 
data show that these species differences in regulating blood glucose are largely 
due to a differential response to stress.  We have also performed glucose 
tolerance tests on P. polionotus leucocephalus (PGSC strain – LS), representing 
a distinct population from that of the PO stock (P. p. subgriseus).  The LS males 
show a similar GTT response to the PO males (data not shown), confirming the 
species difference.  We feel these data are consistent with adaptive variation in 
P. polionotus males to a monogamous lifestyle.    

 
 

Figure 1. 
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Figure 2. 
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Figure 3. 
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The CHORI-233 Peromyscus maniculatus rufinus bacterial artificial 
chromosome (BAC) library was constructed at the Children’s Hospital Oakland 
Research Institute.  The library was constructed after a successful grant 
application from the Peromyscus Genetic Stock Center.  The average size of 
inserted Peromyscus DNA in each BAC is ~ 180,000 base pairs.  The large BAC 
insert size facilitates comparative genomics and identification of gene regulatory 
regions.  BACs are identified by hybridizing a gene probe to filters containing 
individual clones in an identification grid.  
 

As this is the first publicly-available Peromyscus BAC library, we probed 
filters to identify several genomic regions of import to the Peromyscus research 
community.  Initial regions of interest coincided with the research interests of 
three laboratories:  coat color genetics (Hoekstra lab, U.C. San Diego), 
hemoglobin population genetics (Storz lab, U. Nebraska), and genomic 
imprinting, X chromosome-inactivation, and placental development (our lab). 
 

BAC filters (obtained from CHORI) were probed with 3-5 radioactively 
labeled DNA probes during any one hybridization.  These probes were between 
150bp and 1.4kb in length.  Positive clones were further tested by PCR assays.  
Re-probing was only necessary for three regions of interest.  Unambiguous 
clones were identified for all three after the second hybridization was performed.  
Currently we have identified and confirmed BAC clones representing the regions 
of interest listed in Table 1. 
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Table 1. 
 

Probe 
Mouse Syntenic 
Region Research Interest Lab 

Agouti Ch 2, 89.0cM coat color genetics Hoekstra 
Mgrn1 Ch 16, 2.0cM coat color genetics Hoekstra 
Mc1r Ch 8, 68.0cM coat color genetics Hoekstra 
        
Alpha-globin Ch 11, 16.0cM hemoglobin genetics Storz 
Beta-globin Ch 7, 50.0cM hemoglobin genetics Storz 
        
Snrpn Ch 7, 28.65 cM genomic imprinting Vrana 
Gtl2 Ch 12, 54.0 cM genomic imprinting Vrana 
H19 Ch 7, 69.03 cM genomic imprinting Vrana 
Peg3/Pw1 Ch 7, 6.5 cM genomic imprinting Vrana 
Sgce Ch 6, 1.0 cM genomic imprinting Vrana 
Lit1 Ch 7, 69.3 cM genomic imprinting Vrana 
Xist Ch X, 42.0 X-inactivation Vrana 
Esx1 Ch X, 57.0 placental development Vrana 
Csh2 Ch 13, 14.0cM placental development Vrana 

 

 
 

♦♦♦♦♦♦♦♦♦ 
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Crosses between two species of Peromyscus have been shown to 
produce parent-of-origin specific growth and developmental defects.  The hybrid 
defects are particularly pronounced in the placenta.  P. maniculatus (strain - BW) 
females when mated to P. polionotus (strain - PO) males produce placentas half 
the size of the parental species, as well as growth-retarded embryos.  In contrast, 
PO females mated to BW males result in embryonic and placental overgrowth, 
and deleterious phenotypes.    

 
We took a global approach to assessing gene perturbations in the hybrid 

placentas by using Mus musculus cDNA microarrays.  Signal strength was low 
due to divergence between the two genera.  However, several thousand genes 
were suggested by ANOVA analysis to exhibit significant differences in 
expression levels between the parental strains and hybrids.  Thirteen of 
seventeen genes tested to date by quantitative PCR have displayed the pattern 
suggested by the microarray analysis. 

 
Two classes of genes stood out in the data analysis as being affected: 

those influencing the cell-cycle and extra-cellular matrix (ECM).  Our work 
suggests that cell cycle regulators at the G1/S phase checkpoint are down-
regulated in the large hybrid while the small hybrid is more variable.  ECM genes 
are typically downstream targets of cell cycle regulation, and their mis-regulation 
is consistent with many of the dysmorphic phenotypes.  Thus there appears to be 
an imbalance in proliferation in the mature placenta of the reciprocal hybrids.   
These trends appear to apply to embryonic as well as placental tissue. As an 
example, collagen gene expression is severely diminished in the hybrids (Figs. 1 
& 2).  
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Figure 1. Assays verifying expression differences in ECM related genes.  
Quantitative real-time PCR assays were used for Col1a2 (Procollagen I), Col3a1 
(Procollagen III), and Pcolce (Procollagen Enhancer).  Timp3 (Tissue Inhibitor of 
Metalloproteinase 3) RNA expression level was confirmed using semi-
quantitative low cycle radioactive PCR.  All samples include N ≥ 3. 

 
 
Figure 2.   Staining of embryonic day e13.5 sections with a Collagen I antibody.  
Genotype, region of embryo and magnification indicated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

♦♦♦♦♦♦♦♦♦ 
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Transgenic technology has not yet been developed for any Peromyscus 

species.  The ability to manipulate gene expression would make P. maniculatus a 
more attractive system to biomedical researchers.  In combination with its 
capacity for classical genetics, ecological, population, and behavioral studies, 
transgenic technology would make the P. maniculatus complex among the most 
complete biological study systems. 

 
Development of transgenic embryos requires optimization of a number of 

reproductive techniques besides introducing foreign DNA into the zygotes.  
These procedures, which include retrieving the zygotes and transferal to pseudo-
pregnant females, are potentially more difficult than the transfection itself.  While 
we are currently developing these reproductive techniques, we are taking a 
complimentary approach by developing transfection approaches for Peromyscus 
cell lines.   

 
Mouse embryonic fibroblasts (MEFs) are a relatively easy to culture cell-

type, and primarily give rise to connective tissue, though they may also give rise 
to certain other mesodermal derivatives. We are optimizing transfection of 
Peromyscus MEFs for two reasons, both as an advancement of Peromyscus 
technology, and as a way to study gene expression changes occurring in hybrids 
of P. maniculatus (PGSC strain = BW) and P. polionotus (PGSC strains PO & 
LS).  Recent work has shown that genes involved in extra-cellular matrix 
formation (e.g. collagens) exhibit altered expression in the hybrids.  Temporal 
expression profiles of extracellular matrix proteins are recapitulated in MEFs, 
making them an attractive system to study the hybrid dysgenesis at the cellular 
and molecular levels.  We are currently optimizing transfection techniques using 
murine stem cell virus vectors containing green fluorescent protein (GFP). 

 
We have cultured MEFs from the LS, PO, and BW strains. We have also 

cultured MEFs from PO female x BW male hybrids (which display somatic 
overgrowth), and BW female x PO male hybrids (growth retarded).  The pure 
strain MEFs appear comparable in morphology and proliferation.  However, the 
PO x BW lines exhibit altered morphology and display apparent premature 
senescence compared to MEFs derived from undersized BW x PO hybrids 
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(Fig.1).  Further investigation is warranted to explain this differential MEF 
morphology.   
 
 
Figure 1. Morphology of Peromyscus MEFs.  Genotype and passage number are 
indicated.  BW x PO hybrid MEFs at passage 1 resemble those of both parental 
strains at the same passage.  The PO x BW MEFs exhibit altered morphology 
more comparable to older (passage 8) BW MEFs. 
 

 
 
 
 

♦♦♦♦♦♦♦♦♦ 
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Various platforms for DNA microarrays, including oligonucleotide and 
cDNA chips, have enabled global transcriptome comparisons between multiple 
tissue types to delineate patterns of differential gene expression. Development of 
species-specific platforms is a labor-intensive and costly process, often limited to 
the subset of cDNA and/or EST sequences that have been fully annotated for 
any one species. Affymetrix, Inc. produces a robust platform of high-density 
oligonucleotide arrays that include >22,600 probe sets representing >14,000 
different transcripts and/or transcript variants (Mouse Expression GeneChip® 
430A 2.0). This technology, however, has been limited as a general platform for 
transcriptome analyses due to the small number of species for which 
GeneChips® are commercially available.  

 
The mRNA target sequences that comprise the GeneChip® platform are 

each represented by a probe set that is composed of 11-20 probe pairs. Each 
probe pair consists of two 25-mer oligonucleotides, one of which is a perfect 
match (PM) to the target sequence while the other is a mismatch (MM) designed 
with a mutated homomeric nucleotide for the middle (13th) base. The relative 
abundance of a particular transcript is defined by signal intensities, derived from 
analyses of differences between PM (target hybridization) and MM (background 
hybridization) across an entire probe set. Signals are then broken down into 
“present” (P), “marginal” (M) and “absent” (A) calls based on the significance (P 
value) for any PM-MM analysis (GCOS, Affymetrix). While the PM-MM system 
has been shown to produce significantly reliable analyses of mRNA pools across 
tissue types from species for which GeneChips® are available, the ability to 
detect a large pool of transcripts between different mouse species in cross-
species analyses has yet to be determined.  

 
In an effort to define the utility of this platform for transcriptome analyses 

across other murine and peromyscine species, and subsequently across various 
tissue types, we performed >80 hybridization experiments using the Mouse 
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Expression Array 430A 2.0 GeneChips®. Initial experiments involved the use of 
various tissue types, including whole brain, brain subregions, placenta and 
fibroblast cells from various strains of Mus musculus (CD-1, C3H, InX1h, 
C57BL6/J, Paf). These arrays averaged >60% P calls, an expected hybridization 
efficiency for this platform. Mus caroli fibroblast samples were used in 
hybridization experiments to define the validity of this platform within other 
murine species. M. caroli and M. musculus, while G-band identical, diverged 
approximately 5-7 mya (Silver 1995). However, P calls on the mouse array 
platform remained high for this species, averaging 49.43%. As part of our 
ongoing research into hybrid dysgenesis and placental dysplasia, reproductive 
isolation and rapid gene evolution manifest within the mammalian placenta, we 
analyzed mid-gestation placentas from M. musculus CD-1, Mus caroli and Mus 
musculus x Mus caroli hybrids. P calls for these samples averaged 57.63%, 
50.70% and 57.75%, respectively, collectively indicating robust validity for 
detecting mRNA gene expression differences with this platform.  

 
Our studies of placental dysplasia, imprinting incompatibility and rapid 

gene and retroviral evolution within the placenta have been intensely focused on 
studies between two Peromyscus species, P. maniculatus (BW) and P. 
polionotus (PO). Full descriptions of analyses of these datasets, including qRT-
PCR (quantitative real-time RT-PCR) validation, sequence analysis and 
expression profiling are currently under manuscript review and have thus not 
been included here. However, we show P calls for these arrays, including 
analyses from neonatal testes and mid-gestation placentas, to illustrate the 
effective hybridization efficiencies for peromyscine mRNA pools on the mouse 
GeneChip platform. As shown in Figure 1, neonatal testes hybridization 
experiments average 22.73% (BW) and 23.20% (PO) while placenta 
hybridization experiments average 19.87% (BW) and 20.20% (PO). Hybrid 
placentas produce higher P calls, due largely to aberrant gene expression, 
averaging 22.60% (BW x PO) and 22.30% (PO x BW).  

 
In collaboration with the Peromyscus Genetic Stock Center, we aim to 

define and characterize aberrant gene expression profiles in a metastatic 
hardarian gland tumor model within P. leucopus. Hybridization efficiencies with 
these samples were comparable to those obtained with PO and BW samples, 
averaging 20.40% across all normal hardarian gland mRNA samples from P. 
leucopus, 20.25% across strain 109 (the tumor susceptible strain) hardarian 
glands, 22.10% across strain LL (a non-tumor susceptible strain) hardarian 
glands, and 25.30% from 109 hardarian gland tumors (Figure 1). Further 
validation and characterization of these datasets are currently underway.  

 
Previous work in modifying the GeneChip® platform for cross-species 

analyses has been limited to human vs. non-human comparisons, including other 
primate species (Chismar et al. 2002), pig (Shah et al. 2004), cow (Ji et al. 2004) 
and canine (Grigoryev et al. 2005). In the latter analysis, 14% hybridization 
efficiency was obtained from standard P calls for canine mRNA pools on human 
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GeneChips®. It is clear from these analyses, and our own, that the PM-MM 
system of filtering a probe set from any cross-species hybridization experiment 
may incorrectly assign an absent (A) call to a particular probe set. This may be 
due to either lower PM hybridization or higher MM hybridization efficiency across 
a subset of the 11 probe pairs of a set due to sequence divergence between the 
GeneChip® target sequence and the hybridizing mRNA pool. Further work 
deconstructing probe sets is currently being explored in an effort to increase the 
range of informative target sequences from ~2800 mRNA sequences to >6500 
for hybridization experiments with peromyscine samples. It is clear from these 
analyses (Figure 1), and the data obtained therein (not included), that the 
GeneChip® platform, while proving less informative for this group of mammals 
than for murine species, provides an informative amount of data regarding 
transcriptome variation between peromyscine species and tissue types.  For 
protocols for adapting this platform for analyses of gene expression within 
peromyscines, please contact R. O’Neill.  
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Figure 1. Graph of Average P calls derived from hybridization experiments of 
various mRNA samples to the Mus musculus array. The tissue type is listed on 
the X axis while the average is shown on the Y axis. Species and hybrids are 
indicated on the right. The number of replicates is indicated above each bar 
within the graph.  
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Systematics 
 

Multivariate morphometric and mitochondrial (mtDNA) nucleotide 
sequence analyses were conducted on 25 populations of Peromyscus leucopus 
representing the eastern North American range of the species.  An hypothesis of 
presence of previously unknown northeastern glacial refugia in the vicinity of 
George’s and Brown’s Banks, which served as colonizing sources of extant 
northeastern insular populations, was tested using combined morphological, 
nucleotide sequence, paleoclimatological, paleovegetational, geological, and 
geographical data sets. 

 
Nucleotide sequence variation in the mtDNA control region was analyzed 

in 99 individuals representing 23 populations (nine insular, 14 mainland) from 
Nova Scotia (CA) to Georgia (U.S.A.).  Distance and Maximum Parsimony-based 
phylogenetic analyses were conducted on 895 bp of mtDNA control region 
nucleotide sequence data to assess genetic variation within and among 
northeastern insular and eastern United States coastal mainland populations.  
Among the 23 populations sampled, 59 haplotypes were identified of which 26 
were endemic to insular populations.  Although there is limited evidence for 
phylogeographic structuring, interdigitation of haplotypes among populations 
suggests recent interchange of mitochondrial lineages.  Analysis of mismatch 
distribution of pairwise haplotype frequencies indicates recent expansion for 
mainland populations, and a pattern of allopatric stability for insular populations. 

 
Canonical variates, hierarchical cluster, MANOVA, and ANOVA analyses 

for 31 mensural characters were conducted on 1,340 wild caught, adult 
specimens of P. leucopus from 25 insular and mainland populations distributed 
from Nova Scotia (CA) to North Carolina (U.S.A.).  Analyses indicate latitudinal 
clinal variation in size of external characters for mainland populations, and to a 
lesser extent for insular populations from southern New England, consistent with 
Bergmann’s Rule.  Patterns of craniometric variation among insular and 
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contiguous mainland populations exhibit significant variability that is overall 
inconsistent with observed latitudinal clinal variation for external characters.  
Geographic variation of craniometric and external characters among 
northeastern insular populations reveals a complex pattern of mosaic evolution.  

 
Phylogeography 

 
Interpretation of combined morphological, molecular and bathymetric data 

sets does not support the hypothesis for existence of northeastern Pleistocene 
glacial refugia, in the vicinity of George’s and/or Brown’s Banks, as colonizing 
sources for extant northeastern insular populations.  Phenotypic and nucleotide 
sequence divergences among contiguous mainland populations reveals clinal 
differentiation resulting from late Pleistocene (Wisconsin)/Holocene northward 
migration along the coastal mainland and emergent coastal plain from 
southeastern United States Pleistocene refugia.  Insular populations are 
Holocene coastal plain relicts, isolated by vicariance on topographic high spots 
that became islands in the northeast.  Differentiation of insular populations is the 
result of a combination of genetic drift due to initial founding events and 
subsequent lack of gene flow resulting from isolation by rising sea level (up to 
8,000 years for some populations), and localized insular phenotypic adaptation to 
variable environmental selective pressures during the Holocene.   

 
Taxonomy and Conservation 

 
Based on morphological comparisons, P. leucopus is divided into four 

subspecies in northeastern North America.  Current classification schemes 
(Carleton 1989; Hall 1981) recognize: P.l. noveboracensis, the mainland form 
which also occurs on coastal islands in the Gulf of Maine, Block Island, Rhode 
Island, and Long Island, New York; P.l. caudatus, endemic to Nova Scotia; P.l. 
ammodytes, endemic to Monomoy Island, Massachusetts; and P.l. fusus, 
endemic to Martha’s Vineyard, and questionably to Nantucket Island, 
Massachusetts. 

 
The subspecific status of P.l. fusus occurring on Martha’s Vineyard Island, 

Massachusetts is considered valid, with additional inclusion of the population on 
Nashawena Island, Massachusetts.  Peromyscus leucopus occurring on 
Nantucket Island, Massachusetts is sufficiently differentiated, morphologically 
and molecularly, from both Martha’s Vineyard and adjacent mainland populations 
to warrant recognition as a separate subspecies and should no longer be 
assigned to P.l. fusus.  The population occurring on Block Island, Rhode Island is 
sufficiently differentiated to warrant further consideration as a separate 
subspecies.  The population on Monomoy Island, Massachusetts, sampled prior 
to reconnection of this island with the mainland, is morphologically distinct.  This 
confirms its previously established taxonomy as a separate subspecies, 
Peromyscus leucopus ammodytes.  However, because of periodic breakdown of 
physical isolating mechanisms during the last century, additional morphological 
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and nucleotide sequence analyses are required to assess its current taxonomic 
status.   

 
In recent conservation literature there is abundant emphasis on 

designation of sub-portions of species as Evolutionarily Significant Units (ESU) 
for conservation and management practices (Crandall et al. 2000).  Ryder (1986) 
defined ESU as: (1) a set of populations that is morphologically and genetically 
distinct from other similar populations; (2) a set of populations with a distinct 
evolutionary history.  Moritz (1994) constrained the definition by emphasizing 
reciprocal monophyly for mitochondrial haplotypes.  Based on morphological and 
mtDNA control region sequence data derived from this study, P. l. fusus fulfills 
the criteria required for consideration as an ESU.  In addition, due to the shared 
biogeographic history of colonization and isolation, and observed morphological 
and genetic differentiation of insular populations on Nantucket and Block Island, 
consideration as ESU’s is also warranted. 
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As part of the vector ecology component of a three-year Lyme disease 
study, we collected small mammals from twelve counties along two transects of 
New York State to test ear tissue for the presence of the etiologic agent of Lyme 
disease, Borrelia burgdorferi.  There is little published data evaluating snap-traps 
for this type of study, although many small mammal population ecology studies 
have utilized snap-traps, especially wooden-based Victor® or Museum Special 
traps.  We examined the effectiveness of the uniquely designed, plastic-based 
Kness Snap-E® trap for collecting target mammals, primarily white-footed mice 
(Peromyscus leucopus) and deer mice (P. maniculatus), in seven of the twelve 
study sites for the 1998 season.   The study sites were located in the Champlain 
basin from near the Canadian border (Clinton County, NY), to the lower Hudson 
Valley (Dutchess County, NY).   The study sites ranged from areas of recent 
disturbance to typical old growth forests, and most were located on state-owned 
land such as wildlife management areas and state parks.   

 
Previous studies citing the effectiveness of snap-traps used either Victor® 

or Museum Special (The Woodstream Corp., Lititz, PA) mammal traps (Galindo-
Leal 1990, Martell 1979, Wiener and Smith 1972).  The Snap-E® trap (Kness 
Mfg., Albia, IA) was chosen for this project for several reasons.  Unlike the 
wooden-based Victor® or Museum Special snap traps, it has a heavy polystyrene 
base that is resistant to wet field conditions and cleaning.  Its unique design 
employs a strong spring and heavy-duty plastic-coated stainless steel wire bail 
that is designed to travel 90 degrees from the base when triggered (rather than 
180 degrees, as with other traps).  In addition, the trap has a pre-formed bait cup 
surrounded by a large (35mm x 40mm) paddle-like trip mechanism (Fig. 1).  
Furthermore, when purchased in bulk, the cost of a Kness Snap-E® trap is less 
than one-fifth the cost of a Museum Special trap.  We found no published data 
evaluating snap traps for the collection of small mammals for the assessment of 
tick- and other arthropod-borne infections.  Therefore, the purpose of this study, 
based on the 1998 collection season, was to determine the effectiveness and 
efficiency of the Kness Snap-E® trap in the capture of small mammals, especially 
P. leucopus and P. maniculatus, and its usefulness for similar projects. 
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A total of 7364 traps baited with peanuts were set between May and 
October, capturing 813 small mammals.  The Snap-E® trap was effective at 
capturing mostly Peromyscus species and short-tailed shrews but also captured 
a variety of other rodents and insectivores, including jumping mice, flying 
squirrels, chipmunks, voles, and smaller shrews.  Most mammals captured were 
found dead in the trap (97.5%).  Four non-target animals (birds and amphibians) 
were captured.   

 
In general, the trap was effective for our study purposes.  However, the 

dark color of the trap made it difficult to see in field conditions.  The authors 
recommend tying fluorescent survey tape to the traps when setting.  We 
concluded that the Snap-E® trap is an effective, reusable field tool for capturing 
small mammals, especially Peromyscus species, for the purpose of harvesting 
ear tissue for detection of Borrelia burgdorferi spirochetes.  The trap may also be 
valuable for other studies involving the collection of small mammals. 

 
 

Figure 1. The Kness Snap-E mouse trap.  Photo taken from www.kness.com 
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Ultrasound is commonly used by a diverse array of mammalian taxa, 
including bats, odontocete whales, insectivores, and rodents.  Ultrasonic 
vocalizations (USVs) in these groups range from simple broadband clicks 
produced by whales, insectivores, and some megachiropteran bats, to highly 
modified, tonal signals that show structured change over time as in 
microchiropteran bats (Thomas et al. 2004).  Ultrasound is mainly used for 
orientation and prey localization; however, these signals may also have social 
functions, including communication of individual identity or group membership, 
kin recognition, information transfer, mother-infant communication, mate 
attraction, and territorial defense (e.g., Kazial et al. 2001; Pfalzer and Kusch 
2003; Yurk et al. 2002).    In contrast to our wealth of knowledge on the use of 
USVs by bats and whales, we know comparatively little about the use of USVs by 
rodents in the wild (but see Wilson and Hare 2004). As with other mammalian 
behavioral systems, there has been extensive research on rodent ultrasound in 
the laboratory (Wolff 2003), where USVs have been documented for a number of 
rodent species, particularly within the superfamily Muroidea (Geyer and Barfield 
1979; Hahn and Thornton 2005; Sales and Pye 1974; Sewell 1970).  Despite the 
valuable and extensive research on USVs in rodents in the lab, it is unclear if 
and/or when, these USVs are produced in the wild, and how they function in 
natural habitats.  Moreover, muroid rodents are regularly used as models for 
mammalian behavioral systems however, our understanding of how they use 
acoustic communication in the wild is extremely limited. 

 
The genus Peromyscus is an ideal group within which to study USVs in a 

natural context especially given the extensive variation in the ecology and 
behavior of Peromyscus in the wild.  Recently we attempted to systematically 
record Peromyscus producing USVs in the wild.  We attempted these recordings 
at the Hastings Natural History Reserve in Monterey County, California where 
there are long-term live-trapping grids set up for the ecological and behavioral 
study of P. californicus and P. boylii.  First, we live-trapped mice to determine the 
locations of resident individuals. After determining the location of resident 
individuals we recorded USVs by establishing a grid of up to 24 microphones 
capable of recording broadband sonic and ultrasound directly to sound recorders.  
Recording systems were set at sunset and retrieved the following morning.  Over 
6 nights, we recorded a total of 65 high quality, independent USV recordings.  It 
was possible to determine which individuals and species were producing the 
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USVs based on home range analysis of trapping data and we found that both 
species produce USVs in the wild.   

 
To understand the significance of these recorded USVs it is important to 

go over some terminology.  A “syllable” is defined as a single discrete sound. A 
“phrase” is defined as a succession of syllables.  A “motif” is a sequence of 
syllables that were recorded repeatedly over time and that were statistically 
predictable based on acoustic characteristics of the syllables, the number of 
syllables in a phrase, and the duration of time between syllables within a phrase.  
All of our recorded phrases fell into one of seven motifs—that is, there is a 
repertoire of approximately 7 USV motifs (or types) that are being commonly 
produced by wild Peromyscus.  These results were recently published in 
Frontiers in Zoology (Kalcounis-Rueppell et al. 2006).  If you would like to learn 
more about the USVs produced by these two species of Peromyscus, I 
encourage you to read the article and visit the open access article site 
(http://www.frontiersinzoology.com/content/3/1/3) because there are links to the 
acoustic files (that you can listen to) and figures of the spectrographs (frequency 
vs time) of the 7 USV motifs that we recorded.   

 
To validate our field recordings and understand the extent of USV 

production in Peromyscus I visited the Peromyscus Stock Center to passively 
record USVs from captive cohorts of Peromyscus species using the same 
equipment that we used in our field study.  We are still analyzing our data from 
the Peromyscus Stock Center and look forward to communicating the details to 
you in the future.  For now, it is clear from our work at the Peromyscus Stock 
Center that our recordings from the field were produced by Peromyscus.  
Furthermore, it is clear from work at both the Peromyscus Stock Center and from 
the field at the Hastings Natural History Reserve that USV production is a 
common and underappreciated component of the behavior Peromyscus.  
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Stereotypic vocalizations occur in many mammals and possess 
characteristics thought historically informative.  Evolutionary patterns are 
confounded however, by a paucity of appropriate phylogenetic hypotheses, as 
well as inadequate sample diversity.  The muroid subfamily Neotominae 
comprise a diverse and monophyletic assemblage of 16 genera and 
approximately 120 species of rats and mice distributed broadly across North and 
Central America (Musser and Carleton 2005).  This group subsumes a large and 
important species assemblage known generally as the peromyscine mice, which 
are in essence Peromyscus and its close relatives.  While many phylogenetic 
schemes have been proposed based on morphological characters and 
mitochondrial DNA, systematic relationships within this group remain 
inadequately resolved (Bradley et al. 2004; Carleton 1980; Engel et al. 1998; 
Hooper and Musser 1964; Patton et al. 1980; Reeder et al. 2006; Rogers et al. 
1984; Rogers et al. 2004; Stangl and Baker 1984). 

 
Difficulties in discerning the phylogeny are similar to those of the Rodentia 

as a whole due to “their great numbers, their marked mutability and variability, 
their spread over almost every conceivable environment, their remarkable 
adaptability, the shortness of their generations, [and] their unusual fertility with 
overpopulation and severe mortality” (Simpson 1945:197) .  Yet these very same 
characteristics allow this broad assemblage to become a useful model for testing 
a variety of ecological and evolutionary hypotheses. 

 
Peromyscines are speciose, representing varied ecological and social 

conditions, and include at least four genera known to produce simple-to-complex 
stereotypic vocal signals.  We chose this group to examine principal factors 
thought to influence the evolution of vocal communication.  We analyzed both 
nuclear and mitochondrial sequences (inter-photoreceptor retinoid-binding 
protein, growth hormone receptor, and cytochrome B) among a comprehensive 
set of taxa representing all major lineages within peromyscines using Bayesian 
and Parisimony approaches.  Concomittantly, we also recorded the stereotyped 
vocalizations in taxa representing the primary phylogenetic lineages in 
peromyscines.    
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Preliminary phylogenetic interpretations are congruent with current 
classifications in both membership and cohesion of the major tribes (Musser and 
Carleton, 2005).  However, work in progress also recovers some novel 
relationships among deeply rooted lineages, as well as defines the sister groups 
to both Peromyscus and Reithrodontomys, and circumscribes the scope of 
Peromyscus.  Peromyscus is paraphyletic if the majority of genera separated 
from it by Carleton (1980) are retained.  Preliminary behavioural results reveal a 
large number of peromyscine taxa produce vocalizations that are repetitive, high 
amplitude, and characterized by a use of frequency that, collectively, includes a 
wide bandwidth of the acoustic spectrum, ranging from audible to ultrasonic (Fig. 
1).  Figuring prominently in our data are species recorded at the Peromyscus 
Genetic Stock Centre, and at a satellite colony housed at the University of 
Toronto, Department of Ecology and Evolutionary Biology.  There are several 
distinct acoustic motifs among peromyscines, data which we are currently 
mapping and interpreting against our molecular phylogeny.  
 
Figure 1.  A male Scotinomys teguina, a peromyscine rodent, responding to the 

background vocalization of another Scotinomys teguina individual.  Photos 
by Jacqueline Miller.
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